The Combinatorialization of Linear Recurrences
نویسندگان
چکیده
منابع مشابه
The Combinatorialization of Linear Recurrences
We provide two combinatorial proofs that linear recurrences with constant coefficients have a closed form based on the roots of its characteristic equation. The proofs employ sign-reversing involutions on weighted tilings.
متن کاملon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملLinear Recurrences via Probability
The long run behavior of a linear recurrence is investigated using standard results from probability theory. In a recent paper [1] in the American Mathematical Monthly, the authors look at several distinct approaches to studying the convergence and limit L of a sequence (xn) given by a linear recurrence. Our approach is to use probability to study the same sequence. The nth term xn of the seque...
متن کاملLecture # 27 : Linear Recurrences
1 Recurrences A linear, first order recurrence is a problem of the form x(j) = a(j)x(j − 1) + y(j), x(1) = y(1) (x(0) = 0), 1 · · · · · · · −a(2) 1 · · · · · · · −a(3) 1 · · · · · · · −a(4) 1 · · · · · · · −a(5) 1 · · · · · · · −a(6) 1 · · · · · · · −a(7) 1 · · · · · · · −a(8) 1 Such a bidiagonal system of equations corresponds to the forward solution of a system Ax = y after LU–factorization o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2011
ISSN: 1077-8926
DOI: 10.37236/2008